
www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 November 2017 | ISSN: 2320-2882

IJCRT1704159 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1219

Life Cycle of Source Program - Compiler Design

Vishal Trivedi

Gandhinagar Institute of Technology, Gandhinagar, Gujarat, India

Abstract — This Research paper gives brief information on how the

source program is evaluated and from which sections source code

has to pass and parse in order to generate target code or predicted

output. In addition to that, this paper also explains the concept of

Pre-processors, Translators, Linkers and Loaders and procedure to

generate target code. This paper concentrates on Concept of

Compiler and Phases of Compiler.

Keywords — Macro, Token, Lexemes, Identifier, Operators,

Operands, Sentinel, Prefix, Postfix, Quadruple, Triple, Indirect Triple,

Subroutine

I. INTRODUCTION

Whenever we create a source code and start the process of

evaluating it, computer only shows the output and errors (if

occurred). We don’t know the actual process behind it. In this

research paper, the exact procedure behind the compilation task

and step by step evaluation of source code are explained. In

addition to that touched topics are High level languages, Low

level languages, Pre-processors, Translators, Compilers,

Phases of Compiler, Cousins of Compiler, Assemblers,

Interpreters, Symbol Table, Error Handling, Linkers and

Loaders.

Fig. 1 Life Cycle of Source Code

II. HIGH LEVEL LANGUAGES

 Source program is in the form of high level language which

uses natural language elements and is easier to create program. It

is programming language having very strong abstraction. It

makes the process of developing source code easier, simpler and

more understandable. High level languages are very much closer

to English language and uses English structure for program

coding. Examples of high level languages are Visual Basic, PHP,

Python, Delphi, FORTRAN, COBOL, C, Pascal, C++, LISP,

BASIC etc.

III. LOW LEVEL LANGUAGES

Low level languages are languages which can be directly

understand by machines. It is programming language having little

or no abstraction. These languages are described as close to

hardware. Examples of low level languages are machine

languages, binary language, assembly level languages and object

code etc.

IV. PRE-PROCESSORS

 Pre-processor is a computer program that manipulates its input

data in order to generate output which is ultimately used as input

to some other program or compiler. Input of pre-processor is high

level languages and output of pre-processor is pure high level

languages. Pure high level language refers to the language which

is having Macros in the program and File Inclusion. Macro means

some set of instructions which can be used repeatedly in the

program. Macro pre-processing task is done by pre-processor.

Pre-processor allows user to include header files which may be

required by program known as File Inclusion. Example: # define

PI 3.14 shows that whenever PI encountered in a program, it is

replaced by 3.14 value.

V. TRANSLATORS

 Translator is a program that takes input as a source program

and convert it into another form as output. Translator takes input

as a high level language and convert it into low level language.

There are mainly three types of translators.

http://www.ijcrt.org/

www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 November 2017 | ISSN: 2320-2882

IJCRT1704159 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1220

[1] Compilers

[2] Assemblers

[3] Interpreters

Fig. 2 Translators

VI. COMPILERS

 Compiler reads whole program at a time and generate errors

(if occurred). Compiler generates intermediate code in order to

generate target code. Once the whole program is checked,

errors are displayed. Example of compilers are Borland

Compiler, Turbo C Compiler. Generated target code is easy to

understand after the process of compilation. The process of

compilation must be done efficiently. There are mainly two

parts of compilation process.

[1] Analysis Phase: This phase of compilation process is

machine independent. The main objective of analysis

phase is to divide to source code into parts and rearrange

these parts into meaningful structure. The meaning of

source code is determined and then intermediate code is

created from the source program. Analysis phase contains

mainly three sub-phases named lexical analysis, syntax

analysis and semantic analysis.

[2] Synthesis Phase: This phase of compilation process is

machine dependent. The intermediate code is taken and

converted into an equivalent target code. Synthesis phase

contains mainly three sub-phases named intermediate

code, code optimization and code generation.

 Fig. 3 Compilers

VII. PHASES OF COMPILER

 As mentioned above, compiler contains lexical analysis,

syntax analysis, semantic analysis, intermediate code, code

optimization and code generation phases.

Fig. 4 Phases of Compiler

[1] Lexical Analysis:

 Lexical Analysis is first phase of compiler.

 Lexical Analysis is also known as Linear Analysis or

Scanning.

 First of all, lexical analyzer scans the whole program

and divide it into Token. Token refers to the string with

meaning. Token describes the class or category of input

string. Example: Identifiers, Keywords, Constants etc.

 Sentinel refers to the end of buffer or end of token.

 Pattern refers to set of rules that describes the token.

 Lexemes refers to the sequence of characters in source

code that are matched with the pattern of tokens.

Example: int, i, num etc.

 There are two pointers in lexical analysis named

Lexeme pointer and Forward pointer.

 In order to perform token recognition, Regular

Expressions are used to construct Finite automata

which is separate topic itself.

 Input is source code and output is token.

http://www.ijcrt.org/

www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 November 2017 | ISSN: 2320-2882

IJCRT1704159 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1221

 Consider an Example:

 Input: a=a+b*c*2;

 Output: Tokens or tables of tokens

= a

+ b

* c

 2

[2] Syntax Analysis:

 Syntax analysis is also known as syntactical analysis

or parsing or hierarchical analysis.

 Syntax refers to the arrangement of words and

phrases to create well-formed sentences in a

language.

 Tokens generated by lexical analyzer are grouped

together to form a hierarchical structure which is

known as syntax tree which is less detailed.

Fig. 5 Lexical and Syntax Analyzer

 Input is token and output is syntax tree.

 Grammatical errors are checked during this phase.

Example: Parenthesis missing, semicolon missing,

syntax errors etc.

 For above given example:

 Input: tokens or tables of tokens

= A

+ B

* C

 2

Output:

Fig. 6 Syntax Tree

[3] Semantic Analysis:

 Semantic analyzer checks the meaning of source

program.

 Logical errors are checked during this phase. Example:

divide by zero, variable undeclared etc.

 Example of logical errors

int a;

float b;

char c;

c=a+b;

 Parse tree refers to the tree having meaningful data.

Parse tree is more specified and more detailed.

 Input is syntax tree and output is parse tree (syntax tree

with meaning).

 Output for above given syntax tree is parse tree.

Fig. 7 Parse Tree

[4] Intermediate Code:

 Intermediate code (IC) is code between high level

language and low level language or we can say IC is

code between source code and target code.

 Intermediate code can be easily converted to target

code.

 Intermediate code acts as an effective mediator

between front end and back end.

 Types of intermediate code are three address code,

abstract syntax tree, prefix (polish), postfix (reverse

polish) etc.

http://www.ijcrt.org/

www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 November 2017 | ISSN: 2320-2882

IJCRT1704159 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1222

 Directed Acyclic Graph (DAG) is kind of abstract

syntax tree which optimizes repeated expressions in

syntax tree.

Fig. 8 DAG

 Most commonly used intermediate code is three

address code which is having no more than three

operands.

 There are three representations used for three address

code such as Quadruple, Triple and Indirect Triple.

 Input: Parse Tree

Output: Three address code

t1=int to float(2);

t2=id4*t1;

t3=id3*t2;

t4=id2+t3;

t4=id1;

[5] Code Optimization:

 Code optimization is used to improve the

intermediate code and execution speed.

 It is necessary to have a faster executing code or less

consumption of memory.

 There are mainly two ways to optimize the code

named Front-end (Analysis) and Back-end

(Synthesis).

Fig. 9 Code Optimization Ways

 In Front-end, programmer or developer can optimizes

the code. In Back-end, compiler can optimizes the

code.

 Mentioned below are various techniques for code

optimization.

• Compile Time Evaluation

• Constant Folding

• Constant Propagation

• Common Sub Expression Elimination

• Variable Propagation

• Code Movement

• Loop Invariant Computation

• Strength Reduction

• Dead Code Elimination

• Code Motion

• Induction Variables and Reduction in Strength

• Loop Unrolling

• Loop Fusion etc.

 Input: Three address code

Output: Optimized three address code

t1=id4*2.0;

t2=t1*id3;

 id1=t2+id2;

[6] Code Generation:

 Code Generation is final phase of compiler.

 Intermediate code is translated into machine language

which is pass and parse from above phases and lastly

optimize.

 Properties desired by code generation phase are

mentioned below.

• Correctness

• High Quality

• Quick Code Generation

• Efficient use of resources of target machine

 Common issues in code generator are mentioned

below.

• Memory management

• Input of code generator

• Target programs

• Approaches to code generation

• Choice of evaluation order

• Register allocation

• Instruction selection etc.

http://www.ijcrt.org/

www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 November 2017 | ISSN: 2320-2882

IJCRT1704159 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1223

 Target code which is now low level language goes

into linker and loader.

 Input: Optimized three address code

Output: Machine language

MOV id4, R1

MUL #2.0, R1

MOV id3, R2

MUL R2, R1

MOV id2, R2

ADD R2, R1

MOV R1, id1

VIII. COUSINS OF COMPILERS

 Cousins refers to the context in which the compiler typically

operates. There are mainly three cousins of compiler.

[1] Pre-processors

[2] Assemblers

[3] Linkers and Loaders

IX. ASSEMBLERS

 Assembler is a translator which takes assembly language as

an input and generates machine language as an output. Output

of compiler is input of assembler which is assembly language.

Assembly code is mnemonic version of machine code. Binary

codes for operations are replaced by names. Binary language or

relocatable machine code is generated from the assembler.

Assembler uses two passes. Pass means one complete scan of

the input program.

Fig. 10 Assemblers

X. INTERPRETERS

 Interpreter performs the line by line execution of source

code. It takes single instruction as an input, reads the statement,

analyzes it and executes it. It shows errors immediately if occur.

Interpreter is machine independent and which does not

produces object code or intermediate code as it directly

generates the target code. Many languages can be implemented

using both compilers and interpreters such as BASIC, Python, C#,

Pascal, Java, and Lisp etc. Example of interpreter is UPS

Debugger (Built in C interpreter). There are mainly two phases

of Interpreter.

[1] Analysis Phase: Analysis phase contains mainly three sub-

phases named lexical analysis, syntax analysis and semantic

analysis. This phase of compilation process is machine

independent. Analysis phase of interpreter works same as

analysis phase of compiler.

[2] Synthesis Phase: This phase of compilation process is

machine dependent. Synthesis phase contains sub-phase

named code generation (direct execution) as it does not

generate intermediate code.

Fig. 11 Interpreters

XI. SYMBOL TABLE AND ERROR HANDLING

 Translators such as compilers or assemblers use data structure

known as Symbol table to store the information about attributes.

It stores the names encountered in source program with its

attributes. Symbol table is used to store the information about

entities such as interfaces, objects, classes, variable names,

function names, keyword, constants, subroutines, label name and

identifier etc.

 Each and every phase of compiler detects errors which must be

reported to error handler whose task is to handle the errors so that

compilation can proceed. Lexical errors contains spelling errors,

exceeding length of identifier or numeric constants, appearance

of illegal characters etc. Syntax errors contains errors in structure,

missing operators, missing parenthesis etc. Semantic errors

contains incompatible types of operands, undeclared variables,

not matching of actual arguments with formal arguments etc.

There are various strategies to recover the errors which can be

implement by analyzers.

http://www.ijcrt.org/

www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 November 2017 | ISSN: 2320-2882

IJCRT1704159 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1224

Fig. 12 Symbol Table

XII. LINKERS AND LOADERS

 Linker combines two or more separate object programs. It

combines target program with other library routines. Linker

links the library files and prepares single module or file. Linker

also solves the external reference. Linker allows us to create

single program from several files.

 Loader is utility program which takes object code as input

and prepares it for execution. It also loads the object code into

executable code. Loader refers to initializing of execution

process. Tasks done by loaders are mentioned below.

 Allocation

 Relocation

 Link editing

 Loading

 Relocation of an object means allocation of load time

addresses and placement of load time addresses into memory at

proper locations.

XIII. CONCLUSION

 To conclude this research, source program has to pass and

parse from above mentioned all sections to be converted into

predicted target program. After studying this research paper,

one can understand the exact procedure behind the compilation

task and step by step evaluation of source code which contains

pre-processors, translators, compilers, phases of compiler,

cousins of compiler, assemblers, interpreters, symbol table,

error handling, linkers and loaders.

 ACKNOWLEDGMENT

 I am using this opportunity to express my gratitude to everyone

who supported me in this research. I am thankful for their aspiring

guidance, invaluably constructive criticism and friendly advice

during the research. I am sincerely grateful to them for sharing

their truthful and illuminating views on a number of issues related

to the research work.

REFERENCES

[1] Wikipedia - Available on :

https://en.wikipedia.org/wiki/High-level_programming_language

https://en.wikipedia.org/wiki/Low-level_programming_language

https://en.wikipedia.org/wiki/Compiler

[2] Diagrams and Flowcharts – Available on : https://www.draw.io/s

[3] Webopedia – Available on :

https://www.webopedia.com/TERM/H/high_level_language.html

[4] Mrs. Anuradha A. Puntambekar – “Compiler Design” - Technical

Publication – Second Revised Edition August 2016

[5] Darshan Institute of Engineering and Technology – Study Materials

Available on :

http://www.darshan.ac.in/Upload/DIET/Documents/CE/2170701_C

D_Sem%207_GTU_Study%20Material_15112016_100740AM.pdf

http://www.darshan.ac.in/Upload/DIET/Documents/CE/Darshan%2

0-%20Sem5%20-%202150708%20-

%20SP_25112015_054658AM.pdf

[6] Tutorials Point – Available on :

https://www.tutorialspoint.com/compiler_design/compiler_design_s

ymbol_table.htm

[7] Dr. Matt Poole and Mr. Christopher Whyley –“Compilers” -

Department of Computer Science – University of Wales Swansea,

UK

[8] Neha Pathapati, Niharika W. M. and Lakshmishree .C –

“Introduction to Compilers” – International Journal of Science and

Research – Volume 4 – Issue 4 April 2015 - Paper ID: SUB153522

- ISSN 2319-7064

[9] Charu Arora, Chetna Arora, Monika Jaitwal – “RESEARCH

PAPER ON PHASES OF COMPILER” – International Journal of

Innovative Research in Technology – Volume 1 – Issue 5 2014

ISSN : 2349-6002

[10] Aho, Lam, Sethi, and Ullman – “Compilers: Principles, Techniques

and Tools” - Second Edition, Pearson, 2014

http://www.ijcrt.org/

